Fundamentals of Machine Learning

Fundamentals of Machine Learning

Kestus:

24 academic hours

Toimumiskoht:

Veebikoolitus

Toimumiskoht: Veebikoolitus

Eestikeelne lühitutvustus:
Masinõpe on andmeanalüüsi meetod, mis automatiseerib analüütilise mudeli koostamist. See on tehisintellekti haru, mis põhineb ideel, et süsteemid saavad andmetest õppida, mustreid tuvastada ja otsuseid langetada minimaalse inimese sekkumisega. Lihtsalt öeldes kasutatakse masinõppe algoritme, et leida mustreid suurtest andmemahtudest. Andmed hõlmavad kõiki numbreid, sõnu, pilte, klikke – ükskõik, mis andmed digitaalselt on, kõiki saab sööta masinõppe algoritmidele.

 

Masinõpet on võimalik rakendada igas ettevõttes, väikestest suurteni. Näiteks kasutavad masinõpet tuntud platvormid nagu Youtube, Netflix, Spotify, Facebook, Twitter – eesmärgiga pakkuda kasutajale temale paremat infovälja. Vaja on vaid andmebaase, mille kallal masinõpe toimetama panna. Täpsete mudelite loomisega on organisatsioonil parem võimalus tuvastada kasumlikud võimalused või vältida tundmatuid riske. 

Koolitus toimub inglise keeles!

This 3-day course will enable you to better understand what Machine Learning is, including the fundamental practices and principles. It is an introduction to R and data analytics, with a deeper Introduction to Machine Learning. At the end of the course you'll be able to create simple Machine Learning models using Python and R. 

Target audience: Aimed at people with existing technological and mathematical background looking to get a quick exposure to mathematics and techniques of Machine Learning.

The results of the training
At the end of this course attendees will know:

  •          The fundamentals of Machine Learning methodologies and algorithms
  •          The mathematics required for understanding and using Machine Learning algorithms
  •          R Machine Learning packages

 At the end of this course attendees will be able to:

  •          Build Machine Learning models using R
  •          Perform regression analysis
  •          Perform computer simulations using R
  •          Perform validation of Machine Learning models using R to evaluate the quality of models

Prerequisites to the course (recommended):
Delegates wish to take this course should have already completed 'Fundamentals of Data Science' or have the equivalent level of knowledge.

Length: 24 academic hours

The prerequisite for issuing the certificate is full participation in training.

The training topics:

  •          Intro to Science, Data Science and Big Data
  •          Intro to Machine Learning
  •          Intro to Mathematics
  •          Intro to Statistics
  •          Intro to Python
  •          Intro to Python for Data Science

Machine Learning with Python

 

The training price also includes:
teaching materials;
a trainer's consultation on the topics learned by e-mail after the training;
certificate.

 

Loe artiklit:

IT Koolituse uus kursus õpetab looma masinõppe mudeleid

Koolitajad

  • Michael Burgess

    Michael began programming as a young child, and after freelancing as a teenager, he joined and ran a web start-up during university. Around studying physics and after graduating, he worked as an IT contractor: first in telecoms in 2011 on a cloud digital transformation project; then variously as an interim CTO, Technical Project Manager, Technical Architect and Developer for agile start-ups and multinationals.

    His academic work on Machine Learning and Quantum Computation furthered an interest he now pursues as QA's Principal Technologist for Machine Learning. Joining QA in 2015, he authors and teaches programmes on computer science, mathematics and artificial intelligence; and co-owns the data science curriculum at QA.

    Michael Burgess

    Michael began programming as a young child, and after freelancing as a teenager, he joined and ran a web start-up during university. Around studying physics and after graduating, he worked as an IT contractor: first in telecoms in 2011 on a cloud digital transformation project; then variously as an interim CTO, Technical Project Manager, Technical Architect and Developer for agile start-ups and multinationals.

    His academic work on Machine Learning and Quantum Computation furthered an interest he now pursues as QA's Principal Technologist for Machine Learning. Joining QA in 2015, he authors and teaches programmes on computer science, mathematics and artificial intelligence; and co-owns the data science curriculum at QA.

Ajakava

1.päev
2.päev
3.päev

10:00 – 17:00

Fundamentals of Machine Learning

Koolituse ajakava:

  • 10:00 - 11:30 Koolitus
  • 11:30 - 11:45 Kohvipaus
  • 11:45 - 13:15 Koolitus
  • 13:15 - 14:00 Lõuna
  • 14:00 - 15:30 Koolitus
  • 15:30 - 15:45 Kohvipaus
  • 15:45 - 17:15 Koolitus
Fundamentals of Machine Learning

Kestus:

24 academic hours

Toimumiskoht:

Veebikoolitus

Toimumiskoht: Veebikoolitus

Eestikeelne lühitutvustus:
Masinõpe on andmeanalüüsi meetod, mis automatiseerib analüütilise mudeli koostamist. See on tehisintellekti haru, mis põhineb ideel, et süsteemid saavad andmetest õppida, mustreid tuvastada ja otsuseid langetada minimaalse inimese sekkumisega. Lihtsalt öeldes kasutatakse masinõppe algoritme, et leida mustreid suurtest andmemahtudest. Andmed hõlmavad kõiki numbreid, sõnu, pilte, klikke – ükskõik, mis andmed digitaalselt on, kõiki saab sööta masinõppe algoritmidele.

 

Masinõpet on võimalik rakendada igas ettevõttes, väikestest suurteni. Näiteks kasutavad masinõpet tuntud platvormid nagu Youtube, Netflix, Spotify, Facebook, Twitter – eesmärgiga pakkuda kasutajale temale paremat infovälja. Vaja on vaid andmebaase, mille kallal masinõpe toimetama panna. Täpsete mudelite loomisega on organisatsioonil parem võimalus tuvastada kasumlikud võimalused või vältida tundmatuid riske. 

Koolitus toimub inglise keeles!

This 3-day course will enable you to better understand what Machine Learning is, including the fundamental practices and principles. It is an introduction to R and data analytics, with a deeper Introduction to Machine Learning. At the end of the course you'll be able to create simple Machine Learning models using Python and R. 

Target audience: Aimed at people with existing technological and mathematical background looking to get a quick exposure to mathematics and techniques of Machine Learning.

The results of the training
At the end of this course attendees will know:

  •          The fundamentals of Machine Learning methodologies and algorithms
  •          The mathematics required for understanding and using Machine Learning algorithms
  •          R Machine Learning packages

 At the end of this course attendees will be able to:

  •          Build Machine Learning models using R
  •          Perform regression analysis
  •          Perform computer simulations using R
  •          Perform validation of Machine Learning models using R to evaluate the quality of models

Prerequisites to the course (recommended):
Delegates wish to take this course should have already completed 'Fundamentals of Data Science' or have the equivalent level of knowledge.

Length: 24 academic hours

The prerequisite for issuing the certificate is full participation in training.

The training topics:

  •          Intro to Science, Data Science and Big Data
  •          Intro to Machine Learning
  •          Intro to Mathematics
  •          Intro to Statistics
  •          Intro to Python
  •          Intro to Python for Data Science

Machine Learning with Python

 

The training price also includes:
teaching materials;
a trainer's consultation on the topics learned by e-mail after the training;
certificate.

 

Loe artiklit:

IT Koolituse uus kursus õpetab looma masinõppe mudeleid

Koolitajad

  • Michael Burgess

    Michael began programming as a young child, and after freelancing as a teenager, he joined and ran a web start-up during university. Around studying physics and after graduating, he worked as an IT contractor: first in telecoms in 2011 on a cloud digital transformation project; then variously as an interim CTO, Technical Project Manager, Technical Architect and Developer for agile start-ups and multinationals.

    His academic work on Machine Learning and Quantum Computation furthered an interest he now pursues as QA's Principal Technologist for Machine Learning. Joining QA in 2015, he authors and teaches programmes on computer science, mathematics and artificial intelligence; and co-owns the data science curriculum at QA.

    Michael Burgess

    Michael began programming as a young child, and after freelancing as a teenager, he joined and ran a web start-up during university. Around studying physics and after graduating, he worked as an IT contractor: first in telecoms in 2011 on a cloud digital transformation project; then variously as an interim CTO, Technical Project Manager, Technical Architect and Developer for agile start-ups and multinationals.

    His academic work on Machine Learning and Quantum Computation furthered an interest he now pursues as QA's Principal Technologist for Machine Learning. Joining QA in 2015, he authors and teaches programmes on computer science, mathematics and artificial intelligence; and co-owns the data science curriculum at QA.

Ajakava

1.päev
2.päev
3.päev

10:00 – 17:00

Fundamentals of Machine Learning

Koolituse ajakava:

  • 10:00 - 11:30 Koolitus
  • 11:30 - 11:45 Kohvipaus
  • 11:45 - 13:15 Koolitus
  • 13:15 - 14:00 Lõuna
  • 14:00 - 15:30 Koolitus
  • 15:30 - 15:45 Kohvipaus
  • 15:45 - 17:15 Koolitus

Lisainfo

Registreerudes e-poe, e-kirja või telefoni teel, saadame Teile arve ja täpsema info osalemise kohta.
Üksteist päeva enne koolitust saadame Teile e-kirjaga meenutuse osalemise infoga.

Koolitusel osalemine on nimeline, kuid saate osalejat tasuta muuta kuni koolituse alguseni.

Koolituse eest tasumine toimub arvel viidatud arveldusarvele. Arve saadetakse maksja aadressile e-postiga. Arve tuleb tasuda enne koolituse algust arvel märgitud maksetähtajaks.

IT Koolitus on Eesti Töötukassa koolituskaardi koostööpartner. Tutvuge koolituskaardi infoga SIIN.
Täpsema info saamiseks võtke meiega ühendust telefonil 618 1727 või [email protected].

Tühistamisinfo

Kui te ei saa mingil põhjusel koolitusel osaleda, palun andke sellest teada e-posti aadressil [email protected]. Kui teatate mitteosalemisest vähemalt 10 tööpäeva ette, lepime Teiega kokku uue aja või tagastame 100% koolituse maksumusest. Tagastame koolituse osalustasu täismahus juhul, kui pole tehtud koolituse korraldamisega seotud kulutusi (ostetud õppematerjale jms). 

Kui teatate mitteosalemisest 5-9 tööpäeva enne koolitust, kuulub tasumisele 50% arvest.

Hilisemal teavitamisel, koolitusele mitteilmumisel, sellest mitteteatamisel või koolituse poolelijätmisel õppetasu ei tagastata.

Asukoht ja kontaktid

Aadress

Veebikoolitus

IT Koolitus Vana-Lõuna 39/1, Tallinn 6181727 [email protected]

© AS Äripäev 2000-2024
  • Aadress: Vana Lõuna 39/1, 19094 Tallinn
  • Klienditugi: 667 0099 (8:15-17:00)
  • E-post: [email protected]